BentoML로 모델 서빙하기
이 게시글은 "BentoML - v1.0.5" 기준으로 작성되었습니다. Model Serving 이란 MLOps는 모델 관리, 모델 배포, 모델 서빙, 모니터링 등 다양한 요소로 구성되어 있습니다. 이 글에서는 모델 배포와 서빙을 중점적으로 살펴보겠습니다. 모델 서빙이란, 머신러닝 모델을 사용할 수 있도록 배포 혹은 API를 제공하는 것을 의미합니다. 즉, 실질적으로 개발된 머신러닝 모델의 예측값을 사용자에게 전달해주는 것으로 생각할 수 있습니다. 그렇다면, 모델을 서비스하기 위해서는 어떤 방법이 가장 좋을까요? 정답은 없습니다. 사용하는 환경에 따라서 모델들을 독립적으로 배포하거나 자주 변경할 필요가 있을 수 있습니다. 적은 컴퓨팅 자원으로 효율적으로 처리할 필요가 있는 경우도 있고, 반대로 실시간에 ..