re-code-cord
close
프로필 배경
프로필 로고

re-code-cord

  • 분류 전체보기 (52)
    • Paper (4)
      • Generative Model (2)
      • Segmentation (1)
      • 모델 경량화 (1)
    • Study (34)
      • AI (10)
      • MLOps (8)
      • CS (4)
      • OpenCV (1)
      • Algorithm (9)
      • ETC (2)
    • Project (6)
    • ETC (8)
      • 부스트캠프 AI Tech (2)
      • 도서 리뷰 (5)
  • Home
  • About
  • Github
BentoML로 모델 서빙하기

BentoML로 모델 서빙하기

이 게시글은 "BentoML - v1.0.5" 기준으로 작성되었습니다. Model Serving 이란 MLOps는 모델 관리, 모델 배포, 모델 서빙, 모니터링 등 다양한 요소로 구성되어 있습니다. 이 글에서는 모델 배포와 서빙을 중점적으로 살펴보겠습니다. 모델 서빙이란, 머신러닝 모델을 사용할 수 있도록 배포 혹은 API를 제공하는 것을 의미합니다. 즉, 실질적으로 개발된 머신러닝 모델의 예측값을 사용자에게 전달해주는 것으로 생각할 수 있습니다. 그렇다면, 모델을 서비스하기 위해서는 어떤 방법이 가장 좋을까요? 정답은 없습니다. 사용하는 환경에 따라서 모델들을 독립적으로 배포하거나 자주 변경할 필요가 있을 수 있습니다. 적은 컴퓨팅 자원으로 효율적으로 처리할 필요가 있는 경우도 있고, 반대로 실시간에 ..

  • format_list_bulleted Study/MLOps
  • · 2022. 11. 3.
  • textsms
  • navigate_before
  • 1
  • navigate_next
전체 카테고리
  • 분류 전체보기 (52)
    • Paper (4)
      • Generative Model (2)
      • Segmentation (1)
      • 모델 경량화 (1)
    • Study (34)
      • AI (10)
      • MLOps (8)
      • CS (4)
      • OpenCV (1)
      • Algorithm (9)
      • ETC (2)
    • Project (6)
    • ETC (8)
      • 부스트캠프 AI Tech (2)
      • 도서 리뷰 (5)
최근 글
인기 글
최근 댓글
태그
  • #파이썬
  • #AWS
  • #ML
  • #백준
  • #Semantic Segmentation
  • #Computer Vision
  • #부스트캠프
  • #MLOps
  • #알고리즘
  • #CV
전체 방문자
오늘
어제
전체
Copyright © 쭈미로운 생활 All rights reserved.
Designed by JJuum

티스토리툴바